81 research outputs found

    Utility Maximization for Uplink MU-MIMO: Combining Spectral-Energy Efficiency and Fairness

    Full text link
    Driven by green communications, energy efficiency (EE) has become a new important criterion for designing wireless communication systems. However, high EE often leads to low spectral efficiency (SE), which spurs the research on EE-SE tradeoff. In this paper, we focus on how to maximize the utility in physical layer for an uplink multi-user multiple-input multipleoutput (MU-MIMO) system, where we will not only consider EE-SE tradeoff in a unified way, but also ensure user fairness. We first formulate the utility maximization problem, but it turns out to be non-convex. By exploiting the structure of this problem, we find a convexization procedure to convert the original nonconvex problem into an equivalent convex problem, which has the same global optimum with the original problem. Following the convexization procedure, we present a centralized algorithm to solve the utility maximization problem, but it requires the global information of all users. Thus we propose a primal-dual distributed algorithm which does not need global information and just consumes a small amount of overhead. Furthermore, we have proved that the distributed algorithm can converge to the global optimum. Finally, the numerical results show that our approach can both capture user diversity for EE-SE tradeoff and ensure user fairness, and they also validate the effectiveness of our primal-dual distributed algorithm

    Self-organization of Nodes using Bio-Inspired Techniques for Achieving Small World Properties

    Full text link
    In an autonomous wireless sensor network, self-organization of the nodes is essential to achieve network wide characteristics. We believe that connectivity in wireless autonomous networks can be increased and overall average path length can be reduced by using beamforming and bio-inspired algorithms. Recent works on the use of beamforming in wireless networks mostly assume the knowledge of the network in aggregation to either heterogeneous or hybrid deployment. We propose that without the global knowledge or the introduction of any special feature, the average path length can be reduced with the help of inspirations from the nature and simple interactions between neighboring nodes. Our algorithm also reduces the number of disconnected components within the network. Our results show that reduction in the average path length and the number of disconnected components can be achieved using very simple local rules and without the full network knowledge.Comment: Accepted to Joint workshop on complex networks and pervasive group communication (CCNet/PerGroup), in conjunction with IEEE Globecom 201

    Abductive Action Inference

    Full text link
    Abductive reasoning aims to make the most likely inference for a given set of incomplete observations. In this work, we propose a new task called abductive action inference, in which given a situation, the model answers the question `what actions were executed by the human in order to arrive in the current state?'. Given a state, we investigate three abductive inference problems: action set prediction, action sequence prediction, and abductive action verification. We benchmark several SOTA models such as Transformers, Graph neural networks, CLIP, BLIP, end-to-end trained Slow-Fast, and Resnet50-3D models. Our newly proposed object-relational BiGED model outperforms all other methods on this challenging task on the Action Genome dataset. Codes will be made available.Comment: 16 pages, 9 figure

    Achieving Small World Properties using Bio-Inspired Techniques in Wireless Networks

    Full text link
    It is highly desirable and challenging for a wireless ad hoc network to have self-organization properties in order to achieve network wide characteristics. Studies have shown that Small World properties, primarily low average path length and high clustering coefficient, are desired properties for networks in general. However, due to the spatial nature of the wireless networks, achieving small world properties remains highly challenging. Studies also show that, wireless ad hoc networks with small world properties show a degree distribution that lies between geometric and power law. In this paper, we show that in a wireless ad hoc network with non-uniform node density with only local information, we can significantly reduce the average path length and retain the clustering coefficient. To achieve our goal, our algorithm first identifies logical regions using Lateral Inhibition technique, then identifies the nodes that beamform and finally the beam properties using Flocking. We use Lateral Inhibition and Flocking because they enable us to use local state information as opposed to other techniques. We support our work with simulation results and analysis, which show that a reduction of up to 40% can be achieved for a high-density network. We also show the effect of hopcount used to create regions on average path length, clustering coefficient and connectivity.Comment: Accepted for publication: Special Issue on Security and Performance of Networks and Clouds (The Computer Journal

    A Self-Organization Framework for Wireless Ad Hoc Networks as Small Worlds

    Full text link
    Motivated by the benefits of small world networks, we propose a self-organization framework for wireless ad hoc networks. We investigate the use of directional beamforming for creating long-range short cuts between nodes. Using simulation results for randomized beamforming as a guideline, we identify crucial design issues for algorithm design. Our results show that, while significant path length reduction is achievable, this is accompanied by the problem of asymmetric paths between nodes. Subsequently, we propose a distributed algorithm for small world creation that achieves path length reduction while maintaining connectivity. We define a new centrality measure that estimates the structural importance of nodes based on traffic flow in the network, which is used to identify the optimum nodes for beamforming. We show, using simulations, that this leads to significant reduction in path length while maintaining connectivity.Comment: Submitted to IEEE Transactions on Vehicular Technolog

    Self-Organization of Wireless Ad Hoc Networks as Small Worlds Using Long Range Directional Beams

    Full text link
    We study how long range directional beams can be used for self-organization of a wireless network to exhibit small world properties. Using simulation results for randomized beamforming as a guideline, we identify crucial design issues for algorithm design. Subsequently, we propose an algorithm for deterministic creation of small worlds. We define a new centrality measure that estimates the structural importance of nodes based on traffic flow in the network, which is used to identify the optimum nodes for beamforming. This results in significant reduction in path length while maintaining connectivity.Comment: Accepted to Joint workshop on complex networks and pervasive group communication (CCNet/PerGroup), in conjunction with IEEE Globecom 201

    DeformToon3D: Deformable 3D Toonification from Neural Radiance Fields

    Full text link
    In this paper, we address the challenging problem of 3D toonification, which involves transferring the style of an artistic domain onto a target 3D face with stylized geometry and texture. Although fine-tuning a pre-trained 3D GAN on the artistic domain can produce reasonable performance, this strategy has limitations in the 3D domain. In particular, fine-tuning can deteriorate the original GAN latent space, which affects subsequent semantic editing, and requires independent optimization and storage for each new style, limiting flexibility and efficient deployment. To overcome these challenges, we propose DeformToon3D, an effective toonification framework tailored for hierarchical 3D GAN. Our approach decomposes 3D toonification into subproblems of geometry and texture stylization to better preserve the original latent space. Specifically, we devise a novel StyleField that predicts conditional 3D deformation to align a real-space NeRF to the style space for geometry stylization. Thanks to the StyleField formulation, which already handles geometry stylization well, texture stylization can be achieved conveniently via adaptive style mixing that injects information of the artistic domain into the decoder of the pre-trained 3D GAN. Due to the unique design, our method enables flexible style degree control and shape-texture-specific style swap. Furthermore, we achieve efficient training without any real-world 2D-3D training pairs but proxy samples synthesized from off-the-shelf 2D toonification models.Comment: ICCV 2023. Code: https://github.com/junzhezhang/DeformToon3D Project page: https://www.mmlab-ntu.com/project/deformtoon3d

    HPAM : hybrid protocol for application layer multicast

    No full text
    This dissertation presents Hybrid Protocol for Application Layer Multicast (HPAM) which is used to stream live media over the Internet without IP multicast support. HPAM self-organizes clients to form efficient, self-improving, self-repairing, source-based overlay trees which minimize the root latency as well as loss rate for each client. HPAM exploits the simplicity and optimality of a lightweight, centralized controller, DS (Directory Server), with the robustness and scaleability of distributed clients. DS facilitates peer discovery and serves as a reliable backup should the distributed algorithm fails. Tree construction, refinement and recovery from partitions are executed independently by the clients. Other innovations of HPAM include: the JoinSource&Adopt algorithm to specially minimize the latency of clients located right below the root; the Gossip and Spiral mechanisms for tree refinement and repair; the Relative Loss Rate based heuristics for the detection of possible local congestion between a client and its parent to reduce unnecessary parent switching; the study on the impact of cheating clients who fabricate distance measurements on HPAM’s performance; the cheat detection techniques. In essence, it can build and maintain application layer multicast trees with reasonable overheads and network stress and is able to deliver high QoS to its clients.DOCTOR OF PHILOSOPHY (EEE
    • …
    corecore